Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENce@n.nECT® SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 43 (2006) 4906-4916

A viscoplastic strain gradient analysis of materials with
voids or inclusions

Ulrik Borg ?, Christian F. Niordson **, Norman A. Fleck °, Viggo Tvergaard *

& Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Nils Koppels Alle,
Building 404, Kgs, Lyngby, DK-2800, Denmark
® Department of Engineering, Cambridge University, Cambridge, UK

Received 7 April 2005; received in revised form 19 May 2005
Available online 27 July 2005

Abstract

A finite strain viscoplastic nonlocal plasticity model is formulated and implemented numerically within a finite ele-
ment framework. The model is a viscoplastic generalisation of the finite strain generalisation by Niordson and Redanz
(2004) [Journal of the Mechanics and Physics of Solids 52, 2431-2454] of the strain gradient plasticity theory proposed
by Fleck and Hutchinson (2001) [Journal of the Mechanics and Physics of Solids 49, 2245-2271]. The formulation is
based on a viscoplastic potential that enables the formulation of the model so that it reduces to the strain gradient plas-
ticity theory in the absence of viscous effects. The numerical implementation uses increments of the effective plastic
strain rate as degrees of freedom in addition to increments of displacement. To illustrate predictions of the model,
results are presented for materials containing either voids or rigid inclusions. It is shown how the model predicts
increased overall yield strength, as compared to conventional predictions, when voids or inclusions are in the micron
range. Furthermore, it is illustrated how the higher order boundary conditions at the interface between inclusions and
matrix material are important to the overall yield strength as well as the material hardening.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A number of small scale experiments for metals have shown that size-effects play an important role when
strain gradients become large (Fleck et al., 1994; Ma and Clarke, 1995; Stolken and Evans, 1998; Haque
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and Saif, 2003). Such effects are not accounted for in conventional plasticity theories, and several nonlocal
material models have been developed to incorporate the influence of a characteristic material length.

For a gradient plasticity theory proposed by Fleck and Hutchinson (2001) a finite strain generalisation
has recently been developed by Niordson and Redanz (2004) and a numerical implementation for power
law hardening materials has been given by Niordson and Tvergaard (2005). This finite strain model has
been used to study necking instabilities in tension as well as buckling instabilities in compression. It was
found that the gradient effects delay the onset of localisation and increase the load carrying capacity in
compression, in agreement with bifurcation results of Benallal and Tvergaard (1995). Very recently also
the effect of the gradient plasticity theory on the occurrence of cavitation instabilities has been analysed
(Niordson and Tvergaard, in press). As is known from previous studies (Fleck and Hutchinson, 1997;
Huang et al., 2000; Tvergaard and Niordson, 2004), the role of void growth is much reduced when the void
radius is small compared to the characteristic material length. This results in an increased peak stress for
cavitation, but subsequently the stress decays, as the void grows large relative to the material length scale.

In a viscoplastic theory for isotropic materials strain gradient effects have been incorporated by Gurtin
(2003) in a small strain formulation. Also Gudmundson (2004) has proposed a small deformation strain
gradient plasticity theory that has an elastic—viscoplastic version, and these viscoplastic constitutive rela-
tions have been applied by Fredriksson and Gudmundson (2005) to analyse pure shear and biaxial strain
of a thin film.

In the present paper a viscoplastic version of the finite strain model of Niordson and Redanz (2004) is
formulated, i.e. a viscoplastic finite strain generalisation of the gradient plasticity theory proposed by Fleck
and Hutchinson (2001). This formulation makes use of a viscoplastic potential and the viscous material
behaviour is introduced in terms of a power law expression for a nonlocal effective plastic strain rate. Since,
in the viscoplastic theory, no internal boundaries exists between elastic and plastic regions, no internal
higher order boundary conditions must be specified. Such internal boundary conditions are necessary in
a time-independent theory. To illustrate predictions of this viscoplastic nonlocal model, numerical results
are presented for elastic—viscoplastic materials containing either voids or rigid inclusions. The results show
the effect of different values of the void or inclusion radius relative to the characteristic material length
incorporated in the theory. For the material with inclusions different higher order boundary conditions
at the inclusion surface are investigated.

2. Material model

Let u; denote the displacement vector and u; the velocity field. With é; = i;; denoting the velocity gra-
dient, the material spin is given by
i 1, .
by = 5 (& — &) (1)
The symmetric part of the velocity gradient is the strain rate, which is decomposed into an elastic and
plastic part
€ =5 (e +ei) =¢;+¢; 2)
A nonlocal measure of the effective plastic strain rate is defined on the basis of the conventional effective
plastic strain rate and the gradient of the conventional effective plastic strain rate through the incremental
relation
SP.p2 2:P-P
E =¢ +1ILéce, (3)

* T,

where /. is a material length parameter (Fleck and Hutchinson, 2001; Niordson and Redanz, 2004).
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The direction of the plastic strain rate is given by m;; = %S,-j/ o., where S;; = 0;; — %5,—1»0,{,{ denotes the

stress deviator and ¢, = /35S, is von Mises effective stress with ¢; being the Cauchy stress tensor.

The plastic strain rate components can then be written as a product of its magnitude, ¢ = ,/2¢7¢", and

. . . 35
its direction

& = mye" (4)

Following (Fleck and Hutchinson, 2001), assuming that the plastic strain gradients contribute to the
internal work, the principle of virtual power in total form may be formulated as

/(G’ISEU + (Q — 0(6))6ép + TISEIZ)dV = /(T,Su, + ‘E,-n,-SéP)dS (5)
14 ' N

in the deformed configuration. Here, Q is a generalised effective stress which is work-conjugate to the con-
ventional effective plastic strain rate, ¢', and 1, is a higher order stress which is work-conjugate to the gra-
dient of the conventional effective plastic strain rate, és. The current volume and surface are denoted ¥ and
S, respectively. The surface traction is denoted by, T;= g;n;, and tn; denotes the higher order surface
traction.

We now define Kirchhoff stress measures as (defining J as the determinant of the metric tensor)
¢y =Joy, o, =Jow, q=JO, p;=J (6)

Introducing the Jaumann rate of the Kirchhoff stress, Z,-j, and the convected rate of the higher order

Kirchhoff stress, %i, the incremental version of the principle of virtual power, in an updated Lagrangian
framework, can be expressed as (Niordson and Redanz, 2004)

/ (&8 — 0,y(2edér; — edéws) + (¢ — G7,)8e" + %iaé}j)dV = / (T:8i; + pm:de°)dS (7)
vV S

Now, to obtain a viscoplastic version of the theory, a viscoplastic potential is defined as
- P

E
o[ EP) = /0 ool EP)dE" (8)

. . Lo . . . . . P .
where o, is an effective stress which is work-conjugate to the effective plastic strain rate, £ . Taking the var-
iation of the potential gives

30 = 0. OE" = T2 iP5 4+ 28 PEPSE = g5é" + p,5¢ 9)
E E
with the generalised effective stress, ¢, and the higher order stress, p;, defined by the constitutive equations
O¢ .
q9="7 ’ (10)
E
P =512 (11)

By substituting these expressions into the definition of the effective plastic strain (3) it is seen that the
effective stress is given as the following quadratic form in ¢ and p;

oo =q" +12pp; (12)
When excluding the material length scale b'yPsetting L. = 0, the effective stress, ., reduces to the von Mises
stress and the effective plastic strain rate, £ , equals the conventional effective plastic strain rate, ¢".
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The viscous material behaviour is modelled by a power law for the effective plastic strain rate

# i ) . (13)

Here, m is the strain rate hardening exponent and ¢ is a reference strain rate. Strain hardening is taken to
follow a power law with exponent 1/n and initial yield strength 6y = Ee, (where E is Young’s modulus) gi-
ven by

EM "
g[E*] = oo<1 + —) (14)
€o

where the hardening function is evaluated at II;“P instead of €’ as it would be in conventional J, flow theory.
If the strain rate was prescribed such that £ = &), the hardening function, g[E”], would be equal to the
effective stress, o..

The incremental constitutive equations for the viscoplastic material can be obtained from (10) and (11)
using (13) and written in the form

sUAt ijk/(Aekl — mklAeP) = AQU — Aw,-kak,- — O-ikijk (15)
.p . P m
. Oc € . .p E dg .p
.P . P\ M

M 2 [ Oc €i A pP .P E dg .p

At = I (F ((m — I)FAE + Ae‘,-> + <g> dEP lAt> = Ap; — Aeyp, (17)
where the change in the effective plastic strain rate is taken as AE" = P A + £ Ae and the elastic stiffness
tensor is given by

E /1 v
R = 1—+V (5 (5ik(5jz + 5i15jk) + E(Sij(sk/) (18)

3. Problem formulation and numerical method

A material containing uniformly distributed cylindrical voids or rigid inclusions, Fig. 1(a), is analysed
using a plane strain cell model, Fig. 1(b). The dimensions of the unit cell are given by ay and by, and the
size of the void or inclusion is defined by the radius Ry.

The boundary conditions used for the cell model are

=0, T,=0atx; =0
iw=U, T,=0atx =ay+Aa
=0, T;=0atx,=0
i =Upy, T1=0atx,=>by+ Ab

(19)

where 7 are surface traction rates. Using a special Rayleigh-Ritz finite element method (Tvergaard, 1976),
the prescribed cell-side displacement rates, U; and Uy, are determined such that there is a fixed ratio of the
average true stresses

0y = KO (20)
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Fig. 1. The plane strain cell model for a material with rigid inclusions or voids: (a) periodically arranged inclusions/voids and (b) the
unit cell used for the analyses.

Furthermore, when considering voids we have T; = 0 on the void surface, whereas in the case of inclusions
we have #; = 0 on the inclusion surface.

The numerical solutions are obtained using a special kind of finite element method, where increments of
the plastic strain rate appear as degrees of freedom on equal footing with displacement increments. The
displacement increments, Au;, and the change of the effective plastic strain rate, Aé®, are interpolated within
each element between nodal displacement increments, AD™, and nodal effective plastic strain rate changes,
Aéz, respectively

2k !
Au; =D NYADY, A& =" M"Ag, (1)
N=1 N=1

where N and M" are shape functions and k and / are the number of nodes used for the interpolations. The
elements used are isoparametric eight-node quadrilaterals with quadratic interpolation of both displace-
ment increments and effective plastic strain rate increments (k =/=38), as in Niordson and Tvergaard
(2005) for a time independent analysis. The derivatives of the displacement increments and the effective
plastic strain rate increments are taken as

2k 2k /
Ae; =Y NYADY, Ae;=> EJAD, A& =1 MYAe, (22)
N=1 N=1 N=1

iy

where E); =1 (N}, + N%).
Using these relations in the principle of virtual work, the discretized equations can be written in the fol-

lowing form:
K. 0 AF,
= (23)

K, K,

AD

AE” AF,

where

K = /V (EﬁjR,-jk,E% + o,-j(NQ{,iji - 2E§‘§Eﬁ1))dl/ (24)
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is the elastic stiffness matrix
NM M a gN
Kep = — / m,'jR,:/'k[EklM dar (25)
Vv

is the coupling matrix, and

.P 'P .P
KJPVM:/ = Dg+ T MM 2 - 1)gMM MY+ (m— 1) p MY MY
v \ \gP oul ' P ’

B E
et
+12 =5 (m = D) p MM + P MY MY | dv (26)
B o
is the plastic stiffness matrix. The right-hand side in Eq. (23) consists of two components
AFY) = / AT,NYNdS + At / Eijijk,mkléPdV (27)
s v
which is the conventional load increment vector with an added volume force, and
md dg
AF;V = / Apil’liMN ds — Al/ ((m,,R,,klmkle + — g >MN + ¢ zE —g —;:l )dV (28)
N 14 60 dE ’ d €

which is an additional higher order load term with a subtracted volume contribution.

Since the system of equations decouples, it is possible to first solve for the displacement increments and
afterwards solve for the effective plastic strain rate increments and hereby exploit the symmetry of K, and
K., respectively. The integrations (24)—~(28) are carried out using 3 X 3 point Gaussian integration.

When the displacement increments and the effective plastic strain rate increments are known, the Jau-
mann rate of the stress, the generalised effective stress rate and the convected rate of the higher order stress
can be found from the constitutive equations (15)—(17). The increments of the Cauchy stress tensor and the
higher order stress vector is then calculated by

/S S S

LIV

X

Fig. 2. Initial mesh with ao/by =1 and ao/Ro = 0.3 corresponding to a volume fraction of 7.1%.



4912 U. Borg et al. | International Journal of Solids and Structures 43 (2006) 4906-4916

AO'ij = ZijAt + A(U,'kO'kj + O'ikAU)jk - oijA€kk (29)
Aty = At + Aeyty — TiAey Y

Subsequently, the effective stress, o, can be calculated from (12) and the effective plastic strain rate, EP, is
given by (13). The conventional effective plastic strain rate, ¢, and its gradient, éﬁ, is now obtained from
Egs. (10) and (11). '

The finite element mesh used for the analyses is shown in Fig. 2.

4. Results

The material parameters used for the numerical analyses are oo/E = 0.003, n = 10, v = 0.3, m = 0.04 and
¢y = 0.005 s~ !. The initial dimensions of the unit cell are specified by ao/by = 1 so that the voids or inclu-
sions have equal spacings in the directions of the coordinate axes. The initial spacing of the voids or inclu-
sions is specified by Ro/ag = 0.3 corresponding to a volume fraction of 7.1%.

Both for the material containing voids and the material containing inclusions the higher order traction is
taken to vanish along the cell boundary (t;#; = 0). This constitutes the appropriate symmetry boundary
condition for the problems analysed. Also at the free surface around the voids the higher order stress is
imposed to vanish, while for the material containing inclusions the higher order boundary condition is spec-
ified by imposing vanishing plastic strain (e” = 0) unless otherwise stated.

For a material with voids the overall uniaxial stress—strain curve (x = 0) is shown in Fig. 3 for different
values of the material length parameter relative to the void radius. The solid curve shows results for a con-
ventional material (/. = 0), while the dotted and dashed curves show results for gradient dependent mate-
rials with [,/Ry = 0.3 and 1./R, = 0.6, respectively. The figure shows curves of the normalised average true
stress, g1, in the x{-direction as a function of the logarithmic strain, ¢;. The overall strain rate is equal to the
reference strain rate, ¢; = €. It is seen from the figure how a material with small voids (or conversely a large
material length parameter) shows more stiff behaviour in the plastic range. In effect, increasing the material
length parameter, apparently increases the overall material yield stress and thus increases the stress level

14
12
1k
o, 08|
)
06 | L/R=06----
L /Ry=0.3 e
04 conventional 1
0.2 4
0 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

€

Fig. 3. Overall uniaxial stress—strain response (x = 0) for a material with voids. The solid curve shows results from a conventional
plasticity model while the dotted and dashed curves show results for plasticity models with /,/Ry, = 0.3 and /,/R, = 0.6, respectively.
The overall loading rate is given by ¢, = ¢.
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in the plastic range. Well inside the plastic range (e > 0.02) the stress level is around 6% higher for
I./Ry = 0.3% and 11% higher for /,/R, = 0.6, as compared to the conventional material.

In Fig. 4 results for different overall strain rates are shown both for a conventional material and for a
gradient dependent material with /,/Ry,=0.6. The overall strain rate is varied so that in addition to
€1 = € also a 10 times larger and a 10 times smaller strain rate are studied. It is seen from the figure that
increasing the overall strain rate for the conventional material from ¢, = é; to a 10 times larger value has a
similar strengthening effect as accounting for gradient hardening using /,/R, = 0.6. Moreover, the figure
shows that increasing the strain rate by a factor of 10 increases the stress level in the plastic range by around
10%. This is in agreement with the increase expected on the basis of (13) for a homogeneous solid with the
value of m used in the present analyses.

Fig. 5 shows the overall stress—strain curves for the material with inclusions under different levels of the
overall stress ratio k and different material length parameters. The size of the cylindrical inclusions is de-
fined by Ro/ay = 0.3 which corresponds to a reinforcement volume fraction of approximately 7.1%. The
solid curves show results for a conventional material (/. = 0), while the dotted and dashed curves show re-
sults for gradient dependent materials with /,/Ry = 0.3 and /Ry = 0.6, respectively. The figure shows that
increasing the material length scale leads to an apparent increase in the overall yield stress as was also the
case for the material with voids. For all three values of the material length parameter the overall stress level
for k= 0.5 is approximately a factor of two higher than the stress level for x = 0. This is in agreement of
what would be expected for a homogeneous solid when ignoring elastic effects.

Results when varying the overall strain rate for the material with inclusions is shown in Fig. 6 for k =0,
both for a conventional material and for a gradient dependent material with /,/Ry, = 0.6. As for the material
containing voids, increasing the strain rate by a factor of 10 increases the stress level by around 10%, which
would be expected in the plastic range for a homogeneous material with the specific value of m used. For
the material with inclusions the effect on the overall response by increasing the material length parameter
from zero to l./Ry= 0.6 is slightly larger than for the material containing voids discussed in relation to
Fig. 4.

The higher order boundary condition on the interface between fibers and the matrix material is of sig-
nificant importance for the overall material response of reinforced materials (see Niordson, 2003). For the

0.4 F L/IR=06---- ]
conventional
0.2 g
0 1 1 1 1 1 1 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

€

Fig. 4. Overall uniaxial stress—strain response (x = 0) for a material with voids. For three different loading rates given by & = /10,
é1 = ¢ and ¢; = 10¢, results are shown from a conventional plasticity model (solid curves) and from a gradient dependent model with
1,/Ry = 0.6 (dashed curves).
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Fig. 5. Overall stress—strain response for a material with rigid inclusions and two different stress triaxialities given by x =0 and
x =0.5. The solid curves show results from a conventional plasticity model while the dotted and dashed curves show results for /,/
Ry =0.3 and I,/R, = 0.6, respectively. The overall loading rate is given by ¢, = &.
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€

Fig. 6. Overall uniaxial stress—strain response (x = 0) for a material with rigid inclusions. For three different loading rates given by
€1 = &/10, ¢ = & and ¢ = 10¢, results are shown from a conventional plasticity model (solid curves) and results from a plasticity
model with ,/Ry = 0.6 (dashed curves).

results presented until now for the reinforced material a full constraint on plastic flow (¢® = 0) has been
imposed at the interface between the matrix material and the inclusion. Fig. 7 shows results for the two
extreme boundary conditions, which can be imposed at the interface. One is the full constraint on plastic
flow represented by the dotted curves (¢” = 0), while the other is no constraint on plastic flow, as repre-
sented by the dashed curves (t;n7; = 0). It is seen that a full constraint on plastic flow leads to an overall
stiffer response when compared to no constraint on plastic flow. Furthermore, it is seen that the apparent
increase in the overall material yield stress due to gradient effects, which has been observed in the results
presented so far, is not so obvious when imposing vanishing higher order traction at the interface. For this
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Fig. 7. Overall uniaxial stress—strain response (x =0) for a material with rigid inclusions using different higher order boundary
conditions on the inclusion surface. The solid line shows results for a conventional model. The dashed and the dotted lines show results
for the higher order traction and the plastic strain set to zero on the inclusion surface, respectively. Results are shown for two different
values of /,/Ry. The overall loading rate is given by ¢, = ¢.

boundary condition the strengthening effect seems to stem more from an increased material hardening,
which takes place over a longer time in the plastic range and not predominantly in the beginning of plastic
deformation.

5. Discussion

An elastic—viscoplastic material model is needed for a number of applications, where strain rate sensitiv-
ity of material behaviour is important, e.g. at rapid loading in the room temperature range, or at elevated
temperatures, where time dependence of plastic flow tends to get more pronounced. This is the motivation
for the constitutive model presented in the present paper.

The strain gradient plasticity theory proposed by Fleck and Hutchinson (2001) has three different mate-
rial length parameters, each of which has a physical interpretation. Within this framework a theory with a
single material length parameter has been formulated, closely related to the strain gradient theory of Aifan-
tis (1984). In the finite strain generalisation developed by Niordson and Redanz (2004), all three material
length parameters are incorporated, but results are also shown for the single parameter version of the the-
ory. The present elastic—viscoplastic version of the theory has been formulated so far as a single parameter
theory. Since no internal elastic—plastic boundaries exists in the elastic—viscoplastic model, no internal high-
er order boundary conditions need to be specified.

The results here show that both for the material containing voids and the material containing inclusions
the overall stress—strain response is more stiff the larger the value of the ratio /./R, between the material
length and the void or inclusion radius. This result is as expected based on the time independent strain gra-
dient plasticity model. Also, in both cases the strain rate has been varied, and the results have shown the char-
acteristic feature of a strain rate sensitive material that the stress levels are higher the higher the strain rate.

Due to the strongly nonlinear dependence on the stresses in (13), the solution will tend to be numerically
unstable at low viscosities. To increase the stable step length at lower viscosities than those considered here,
forward gradient methods (Peirce et al., 1984) would be useful.

For rigid inclusions computations using either of the two extreme sets of boundary conditions on the
inclusion-matrix interface have been compared (Fig. 7). For both sets of higher order boundary conditions
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the response is more stiff than that corresponding to the conventional material with no characteristic mate-
rial length, as would be expected due to the gradient effects accounted for in either case. Furthermore, the
boundary condition representing full constraint on plastic flow at the interface to the material that does not
yield gives an overall stiffer response than the other set of boundary conditions, representing no constraint
on plastic flow at the interface.
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